Recovering Event Kinematics Using Constraints from Displaced Tracks

Michael Park

with Scott Thomas and Yue Zhao

Background/Motivation

- Early stages of LHC analysis Look for deviations from Standard Model of any kind
 - Standard Model predicts rates for final states
 - Counting experiments generally most straightforward
 - Requires precise knowledge of SM backgrounds
 - Can claim new physics but cannot claim what new physics
- Specific discoveries need more detailed information
 - Mass spectra, spin structure, coupling strengths, etc... required to validate or invalidate specific models

Background/Motivation

- Reconstruction of mass resonance peaks
 - Non-interacting particles will pass through LHC undetected
 - Existence inferred by missing transverse momentum
 - Mass resonance reconstruction not possible
- Missing energy signatures are particularly challenging
 - Irrecoverable loss of information
- Missing energy signatures are fairly generic for BSM models
 - R-parity in SUSY, Extra Dimensions, "WIMP Miracle", etc...

The Problem

- Many mass measurement techniques exist for MET events
 - Cleverly constructed variables reveal kinematic features
 - MT2, mass edges from on-shell cascades, etc...
- Most existing techniques require large number of events
 - Kinematic features only apparent in high stat, distributions
 - Difficult to use for early discovery level searches
- Is it possible, under any circumstances, to recover all kinematic quantities event-by-event from MET events?
- Presence of displaced vertices or tracks provides a handle

Quantifying the Unknowns

<u>Unknowns</u>		
LSP 4-momenta	8	
<u>Constraints</u>		
Missing p _T	2	
Constraint Equations	k	
Total Number of Unknowns: 6-k		

- Constraints Assume some symmetry between decay chains (Gunion, McElrath,...)
- Considering m events we must add to the above another (m-1)(6-2k) unknowns
- For m events: 6m-2km+k unknowns

Parameterizing the Unknowns

- Naively seems like the LSP momenta are lost NOT TRUE!
- The 3-momenta of the LSP's depend ONLY on the direction of the NLSP 3-momenta

$$\vec{p}_{LSP_i}(c_i, \ \hat{p}_{NLSP_i})$$

Two constraints

$$\vec{p} = \vec{p}_{LSP_1} + \vec{p}_{LSP_2}$$

Eliminate c_1 and c_2

$$\vec{p}_{LSP_i}(\hat{p}_{NLSP_1}, \ \hat{p}_{NLSP_2})$$

Displaced Vertex Constraints

- Key Assumption: $c au |_{\mathrm{NLSP}} \gg c au |_{\mathrm{All\ Other\ Particles}}$
- Then direction of NLSP ~ location of the displaced vertex

 Measuring displaced vertices equivalent to measuring LSP 3-momenta

$$\vec{p}_{LSP_i}(\vec{r}_1, \vec{r}_2)$$

- Difficulties with measurement
 - Prompt SM particle decays
 - Example of b-jet tagging

Displaced Track Constraints

- If final SM particle is stable, only displaced tracks appear
- Displaced vertex must lie somewhere along path of track

Examples from GMSB

- Low scale SUSY breaking implies massless LSP
- Displaced vertices
 - Trivial (will not be discussed)
- Displaced tracks
 - Condition for recovery of all unknowns is 2m-2km+k=0

Particle	Symbol	Mass
Bino	\tilde{B}	$199.30 \; \mathrm{GeV}$
Slepton	$ ilde{l}_R$	$107.44~\mathrm{GeV}$
Gravitino	$ ilde{G}$	0 GeV

GMSB Example 1 (m=1, k=2)

k = 2 implies

- $m_{X_2} = m_{Y_2}$
- m_{X3}=m_{Y3}

Two equations for two unknowns

$$m_{X_2}^2 = (p_{X_2}^{\mu}(z_X, z_Y) + p_{a_1}^{\mu})^2 = (p_{Y_1}^{\mu}(z_X, z_Y) + p_{b_1}^{\mu})^2 = m_{Y_2}^2$$

$$m_{X_3}^2 = (p_{X_2}^{\mu}(z_X, z_Y) + p_{a_1}^{\mu} + p_{a_2}^{\mu})^2 = (p_{Y_1}^{\mu}(z_X, z_Y) + p_{b_1}^{\mu} + p_{b_2}^{\mu})^2 = m_{Y_3}^2$$

GMSB Example 1 (m=1, k=2)

- Highly nonlinear system of equations
 - Multiple solutions
- In practice, need few events to confirm mass spectrum measurement
- Plot of solutions using 4 Monte Carlo events

Particle	Symbol	Mass
Bino	$ ilde{B}$	$199.30 \; \mathrm{GeV}$
Slepton	$ ilde{l}_R$	$107.44~\mathrm{GeV}$
Gravitino	$ ilde{G}$	0 GeV

Can We Do Better?

- Can we reduce dependence on constraint equations by analyzing more events?
- The condition for total kinematic recovery 2m-2km+k=0

$$k = \frac{2m}{2m-1}$$
 so as m $\to \infty$, k $\to 1$

- Possible to reconstruct masses with k=1?
- Naïve answer: NO

GMSB Example 2 (k=1)

- Condition k=1 implies one equation with two unknowns
- Not enough constraints to specify unique solution

$$m_{X_2}^2 = (p_{X_1}^{\mu}(z_X, z_Y) + p_{a_1}^{\mu})^2 = (p_{Y_1}^{\mu}(z_X, z_Y) + p_{b_1}^{\mu})^2 = m_{Y_2}^2$$

Can reduce space of solutions to one-dimensional subspace

$$z_Y \to z_Y(z_X)$$

GMSB Example 2 (k=1)

 One-to-one map between particle mass and beam axis coordinate of a secondary vertex

$$m_{X_2}^2(z_X, z_Y) \to m_{X_2}^2(z_X)$$

- As z_X goes to infinity, the direction of the NLSP asymptotically approaches a fixed unit vector, hence m_{X_2} asymptotically approaches some fixed number
- Range of possible values for m_{X_2} form a finite set
 - Correct value is always an element of this set

GMSB Example 2 (k=1)

- Over a few events, plot entire range of possible solutions for particle mass
- Since correct mass is always inside the range, histogram will peak at correct solution

Particle	Symbol	Mass
Bino	\tilde{B}	$199.30~{\rm GeV}$
Slepton	$ ilde{l}_R$	$107.44~\mathrm{GeV}$
Gravitino	\tilde{G}	0 GeV

A Massive LSP (m=2, k=2)

 With displaced tracks and a massive LSP there are 3m-2km+k unknowns

$$m_{X_1} \neq 0$$

$$m_{Y_1} \neq 0$$

$$m_{X_1} = m_{Y_1}$$

One possible solution to this condition has m=2, k=2

$$m_{X_2}^2(z_X, z_Y, m_{X_1}) = m_{Y_2}^2(z_X, z_Y, m_{X_1})$$

 $m_{X_3}^2(z_X, z_Y, m_{X_1}) = m_{Y_3}^2(z_X, z_Y, m_{X_1})$

A Massive LSP (m=2, k=2)

- Two equations, three unknowns solutions are lines in R³
- Convenient to change variables to $(m_{X_1}, m_{X_2}, m_{X_3})$

$$m_{X_3} \to m_{X_3}(m_{X_1}, m_{X_2})$$

- Plotting solutions over 3 events yields:
- In the very narrow width limit, correct solution lies at intersection of the curves

A Massive LSP (m=2, k=2)

- Non-zero widths mean lines will not intersect perfectly
- Search for region with highest Gaussian density of lines
- Perform a likelihood fit using Gaussian template

Particle	Symbol	Mass
Bino	\tilde{B}	$199.30~{ m GeV}$
Slepton	\tilde{l}_R	$107.44~{ m GeV}$
Gravitino	\tilde{G}	50 GeV

Conclusions

- Early search strategy Search under the lamp post
- If new physics manifests as dual displaced vertices or tracks then O(few) events could provide us with
 - Convincing evidence of this decay topology
 - The mass spectrum of new particle states
 - In supersymmetric theories, decay length of NLSP and an estimation of the SUSY breaking scale

$$c\tau \sim \frac{(\sqrt{F})^4}{m_{X_2}^5}$$